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WELCOME TO THE MEDITERRANEAN JOURNAL OF 
MEASUREMENT AND CONTROL

We would like to welcome you all to the third volume - first issue - of The Mediterranean
Journal of Measurement and Control. This issue of the journal, comprising of five papers, is
dedicated to the latest research work being done in the analyses of modeling and control of
dynamic systems. 

The first paper by Xiao deals with the problem of a jump linear-quadratic-Gaussian (JLQG)
control of continuous-time Markov jump systems with uncertain second-order statistical
properties. Uncertainty is modeled by allowing process and observation noise spectral density
matrices to vary arbitrarily within given classes. The upper bounds of the perturbation to the
noise covariances matrix are given based on the guaranteed control performance, and a robust
minimax JLQG regulator is therefore adopted under the worst conditions. Not only can this
method minimizes the worst quadratic object performance function of the uncertainty, but the
control performance index can be guaranteed to be within a given freedom. 

The second paper by Mahmoud deals with delay-independent and delay-dependent
robust stabilization schemes that are established for a class of continuous-time systems with
state-delays and norm-bounded uncertainties against controller gain variations. State-feedback
resilient adaptive controllers are constructed for the case of known gain perturbation bounds
and then extended to accommodate unknown norm-bounded perturbations. All the developed
results are conveniently expressed in linear matrix inequalities (LMIs) format. 

The third paper by Röbenack proposes a new technique that uses an observer to estimate
the current input into a neuron whose voltage is measured electrophysiologically. As a by-
product, one also obtains informations about the gating variables of the ionic channels. We prove
the global convergence of the observer for all voltage-gated ion channel models within the
Hodgkin-Huxley formalism. The current observer can be implemented either offline or
concurrently with the recording. 

The fourth paper by Lalili presents an algorithm for the space vector pulse width
modulation (SVPWM) applied to three-level diode clamped inverter. In this algorithm, the space
vector diagram of the three-level inverter is decomposed into six space vector diagrams of two-
level inverters. This idea allows to generalize the two-level SVPWM algorithm into the case of
three-level inverter. The redundant vectors of the space vector diagram of three-level inverter are
used to control its neutral point potential using a closed loop.

Finally, the fifth paper by Fawzy deals with the problem of designing a global robust
model reference adaptive output feedback tracking control for SISO nonlinear systems
containing a vector of unknown constant parameters; entering linearly and subject to bounded
disturbances with unknown bound. Furthermore, there is no a priori knowledge assumed on the
sign of the high frequency gain. A Nussbaum gain is introduced in the global adaptive algorithm
to ensure that the output tracks any bounded reference signal. 

January 2007

Dr. Mohamed H. Mahmoud
Editor-in-Chief
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 ROBUST JLQG REGULATOR OF GUARANTEED CONTROL 
PERFORMANCE WITH UNCERTAIN NOISE 

X. Xiao, H. Xi *, J. Zhu, H. Ji
Department of Automation, University of Science and Technology of China, P. R. China

over the past several decades. A useful approach is to use a
ABSTRACT
The problem of a jump linear-quadratic-Gaussian (JLQG) control
of continuous-time Markov jump systems with uncertain second-
order statistical properties is considered. Uncertainty is modeled
by allowing process and observation noise spectral density
matrices to vary arbitrarily within given classes. The upper bounds
of the perturbation to the noise covariances matrix are given based
on the guaranteed control performance, and a robust minimax
JLQG regulator is therefore adopted under the worst conditions.
Not only can this method minimizes the worst quadratic object
performance function of the uncertainty, but the control
performance index can be guaranteed to be within a given
freedom. Finally, two numerical examples are included to
demonstrate the performance of this method. 

Keywords
Markov Jump Systems, Uncertain Noise, Robust JLQG
Regulator, Perturbation Bound.

1. INTRODUCTION
The study of the linear-quadratic-Gaussian (LQG) optimal
control problem for finite dimensional systems keeps attracting
considerable attentions due to demands from practical
dynamical processes in mechanics, chemical process,
automotive systems and electrical circuit systems and others.
A well-known property of the LQG optimal control problem is
that the optimal regulator, synthesized by the LQ optimal
technique, is generated from the estimated state which is the
output of the Kalman filter. The standard LQG optimal control
design for a linear stochastic dynamic system requires not only
an accurate description of the statistical characteristic of noise
signal but also an exact system model. Nevertheless, in many
actual problems, the noise covariances are hardly known.
Consequently, the standard LQG regulator may not be robust
against modeling uncertainty and disturbances. Therefore, the
study of robust LQG optimal problem for those systems whose
noise covariances are known only to be within some classes is
of practical importance and has been attracting more interest
*Corresponding author: E-mail: xiaoxiaobo@ustc.edu
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game-theoretic formulation with which one minimizes the
worst performance stimulated by uncertain factors and this
approach has been used successfully to design the minimax
robust controller for linear systems with uncertain noise. And
some representative results of LQG control for linear system
with uncertain noise have been addressed in [1-3].

On the other hand, many physical systems have variable
structures subject to random abrupt changes, which may result
from abrupt phenomena such as random failures and repairs of
the components, changes in the interconnections of
subsystems, sudden environmental changes, and others. A
system with this character may be modeled as a hybrid one;
that is, the state space of the system contains both discrete and
continuous states. A special class of hybrid systems is the so-
called Markov jump systems. In the past three decades,
Markov jump systems have been extensively studied, and a lot
of achievements have been made on control design, filtering
and stability analysis, see [4-16]. With the problem of JLQG
control, there also exists a vast literature, see [12-16]. We note
that, a common feature of those studies is that the exogenous
input signals are all assumed to be Gaussian with known
statistic. Considering that there exist uncertain factors in many
actual problems, for continuous-time Markov jump linear
systems, the study of a robust JLQG control approach under
uncertain noise is of practical importance. However, to date
this problem has not yet fully investigated. 

In this paper, we are interested in robust JLQG regulator
design for continuous-time Markov jump systems with
uncertain noise. Uncertainty is modeled by allowing process
and observation noise spectral density matrices to vary
arbitrarily within given classes. Firstly, we give a perturbation
upper bound on uncertain noise covariances in which the
deviation of the control performance index is guaranteed to be
within a certain bound. Secondly, the worst performance
yielded by the noise uncertainty can be minimized by a
minimax robust JLQG regulator. The paper is organized as
follows: the problem of robust JLQG regulator for Markov
jump systems is formulated in Section 2. In Section 3, a
correspondence relation between the control performance
index and the perturbation noise covariances is demonstrated,
and a simple and direct way is given to derive a perturbation
upper bound on uncertain noise covariances. The minimax
robust JLQG regulator, based on Game Theory, is formulated
in Section 4. Finally, two numerical examples are included.

2. PROBLEM FORMULATION AND 
PRELIMINARIES 

In this section, the problem of robust JLQG regulator for
Markov jump systems with uncertain noise is formulated
firstly. For a class of Markov jump linear systems, when the
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process and observation noise spectral density matrices vary
arbitrarily within given classes, the control performance index
may deviate from the ideal value. Therefore, how to guarantee
the robustness of control performance for the JLQG regulator
is a question to be solved. Secondly, to illustrate the
relationship between the control performance index and the
uncertain noise, we develop the equivalent form of the control
performance index. 
Consider the following class of dynamical systems in a fixed
complete probability space :

where  is the system state,  is the
measurement,  is the control input. The form process

 is a time homogeneous Markov process with right
continuous trajectories and taking values in finite state space

 with transition probability matrix
 given by:

where ,
 is the transition rate from mode i at time t to mode j at time

, and , . For any ,

, , are known

constant matrices. There ,  are the process

and measurement noises respectively. And we should make the

following assumptions on the process noise  and

measurement noise .

Assumption 1 For all ,  and : 

where , . W and V are the known
nominal noise covariance matrices;  ∆W and  ∆V are the
unknown but bounded perturbation noise covariance matrices.
In assumption 1, the notation  (respectively, )
means that W is positive semi-definite (respectively positive).

   is the Dirac function. 
The objective of the JLQG control is to choose u(t), for

 to minimize the time average quadratic cost

where  and .

To simplify the denotation, we use the subscript i denote rt,
such as . 

The next definitions of stochastic stability and stochastic
detectability of system (1) is given in [5] and [4]. 

Definition 1 We say that the noise-free system (1) (or the
triplet ) is stochastically stabilizable, if for
every initial state , there exists a linear feedback
control law ,  such that there exists a
symmetric positive definite matrix M satisfying 

Definition 2 We say that the system  is
stochastically detectable if its dual  is
stochastically stabilizable. 

Assumption 2 For Markov jump systems (1) with the control
object function (3): 

(1) The triplet  is stochastically detectable; 

(2) The triplet  is stochastically stabilizable; 

(3) The triplet  is stochastically stabilizable; 

(4) The triplet  is stochastically detectable. 

By [4], we know that, under the condition of Assumption 2,
when the Markov jump systems (1) only include the known
nominal noise W and V, the solution to the JLQG regulator
problem (1)-(3) is given by the feedback system 
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If there exist uncertain noises of the process and measurement
(that is, , ), the covariance matrices of noise
become  and . Let us consider the case that the regulator
has been designed with nominal noises covariances instead of
the actual noise covariances, that is, we still use the filter (7) to
design the regulator.

Then the actual estimation error covariance matrix , 
satisfy the following coupled Lyapunov equation: 

Let us define

Then, on combining (1), (4) and (7) with (11), we have 

Hence, the cost can be written as 

Substituting (4) and (11) into (3) gives 

Define

For , , let , then

where  when 

Define

It can be easily shown (see, for example, [7]) that
, .

Letting , then Zi satisfies 

As the method of proof of Theorem 3.5 in [4], averaging over
the initial state and permuting integration and expectation, then
the cost (14) can be written

where tr[] is the trace of matrix. We note that, Zi can be
rewritten as follows

where .

In [5], it has been shown that the matrices ,  are
stable. Hence, (16) becomes

With few manipulations, (18) can be rewritten as 
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Let

Then we can get three equations:

Combining (21) with (6) gives

Combining (24) with (22) gives

And (23) becomes

Then average quadratic cost becomes

Now, we define the deviation of the control object index to the
ideal value, which is yielded by the perturbation noise
covariances, as

where  is an arbitrary given upper bound of the
deviation. Obviously,  is linear with respect to
∆W and ∆V. 
Our purpose is to find a set  associated with a perturbation
upper bound on uncertain noise covariances such that for

, the deviation of the control object index is
guaranteed to be within a given bound . And the worst
performance yielded by the noise uncertainty can be
minimized by a robust JLQG regulator. 

3. PERTURBATION UPPER BOUND
In this section, we first give some important properties of the
deviation of the control performance index. Then we develop
the method to find the set  associated with a perturbation
upper bound on uncertain noise covariances. 
Suppose

to be a compact convex set. It is clear that the
:  is a linear mapping for

. Some important as well as practical
properties of  are contained in the following
lemmas. 
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If , rewrite (29) as

By , then

If , rewrite (29) as

and therefore 

This implies inequality (28) holding.

Applying the results of Lemma 1 and Lemma 2, we can
directly obtain the following theorem. 

Theorem 1 Suppose

to be a compact convex set, and write 

then  must be reached by matrix pair  in Ω for
any mode . 

Supposing the weights of  and  are independent
respectively, that is 

where  and  are the
covariances of corresponding weight without uncertain noise
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negative perturbation parameters. Noting the s-th (t-th)
diagonal element of  is 1, and the other elements are
zero, then 
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where  and  are
variable vectors. ,    is an arbitrary given upper bound
of the deviation (27).

In consideration of  and , the search of the
maximal set  in  is topologically equivalent to the
calculation of the maximal volume set in a class of hypercube
set  defined on (33), where 

This problem is attributed to the following
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function fmincon of MatlabTM, we can get the numerical
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that is, the JLQG optimal regulator under the worst-case
condition is minmax robust JLQG regulator.

5.  NUMERICAL EXAMPLE
Example 1: For the purpose of illustrating the developed
theory, we consider a two-mode continuous-time Markov jump
systems of the type (1).

Algorithm:

Step 1. Solve the couple Riccati equation (5) and (9), we obtain

Step 2. By (5) and (8), we have

Step 3. Solve the couple equation (23), we get 

Step 4. Setting , and under the condition of
Theorem 2, applying the function fmincon of MatlabTM to
(35), we can get the perturbation upper bound

Step 5. Solve the couple equation (38), and calculate (37), to
get

Step 6. Substituting  and  into (25), we obtain

Step 7. Applying the minmax robust JLQG regulator, we
obtain the deviation of the control performance index under the
worst-case condition: 

when 

for 

Example 2: Consider a two-mode continuous-time Markov
jump systems of the type (1).

Using the Algorithm Step1-Step 3 in Example 1, we have
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Setting , , then

when 

for 

The examples depict that applying the minmax robust JLQG
regulator not only can minimize the worst quadratic object
performance function of the uncertainty, but also can
guaranteed the control performance index to be within a given
freedom.

6. CONCLUSIONS
In the paper, the robust JLQG regulator of guaranteed control
performance for continuous-time Markov jump systems with
uncertain noise is considered. A simple and direct way is given
to derive a convex set associated with a perturbation upper
bound on uncertain noise covariances so that the deviation of
the control object error performance index is guaranteed to be
within the precision prescribed in actual problems.
Furthermore, the worst performance yielded by the noise
uncertainty can be minimized by a minimax robust regulator.
The numerical examples have been used to illustrate the
application of the proposed method. 
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relevant results are available in [1, 4] and further effort to
ABSTRACT
Delay-independent and delay-dependent robust stabilization
schemes are established for a class of continuous-time systems
with state-delays and norm-bounded uncertainties against
controller gain variations. State-feedback resilient adaptive
controllers are constructed for the case of known gain perturbation
bounds and then extended to accommodate unknown norm-
bounded perturbations. All the developed results are conveniently
expressed in linear matrix inequalities (LMIs) format. Simulation
results are presented to demonstrate the developed theory.

Keywords
Uncertain Systems, Adaptive Control, Time-Delay Systems,
Robust Stabilization, LMIs.

1. INTRODUCTION
Considerable discussions on delays and their
stabilization/destabilization effects in control systems have
attracted the interests of numerous investigators in recent years
[1-9] and it becomes quite clear that there are various sources
for delays including finite capabilities of information
processing among different parts of the system, inherent
phenomena like mass transport flow and recycling and/or by
product of computational delays.

Another research direction arises in the course of controller
implementation based on different control design methods
(including weighted , , µ and  synthesis techniques),
it turns out that the controllers are very sensitive with respect
to errors in the controller coefficients [5]. The sources for this
include, but not limited to, imprecision in analogue-digital
conversion, fixed word length, finite resolution
instrumentation and numerical roundoff errors. By means of
several examples, it is demonstrated [5] that relatively small
perturbations in controller parameters could even destabilize
the closed loop system. Hence, it is considered beneficial that
the designed (nominal) controllers should be capable of
tolerating some level of controller gain variations. This
illuminates the controller fragility problem for which some

H2 H∞ l1
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alleviate this problem can also be found in [9, 12, 13].

The objective of this paper is to contribute to the further
development of robust feedback stabilization for a class of
linear state-delay systems against norm-bounded uncertainties
and gain perturbations. In the present work, we focus on the
design of delay-independent and delay-dependent adaptive
controllers which guarantee the asymptotic stability of the
closed-loop system for all admissible perturbations and
uncertainties. Previous related work on adaptive stabilization
of uncertain systems can be found in [6, 7, 8, 10] where the
purpose of adaptation was to accommodate the bounds on
uncertainty set. Here, we extend these methods to establish
conditions for state-feedback delay-dependent stabilization of
uncertain state-delay systems. These conditions are
conveniently expressed in the form of linear matrix
inequalities (LMIs). Numerical examples are provided to
illustrate the theoretical developments.

Notations and Facts: In the sequel, the superscript ”t” stands
for matrix transposition,  denotes the n-dimensional
Euclidean space equipped with norm ||.||,  is the set of
all n × m real matrices and the notation W > 0 for 
means that W is symmetric and positive-definite. We use W-1

to denote the inverse of any square matrix W. The Lebsegue
space L 2[0, ) consists of square-integrable functions over the
interval [0, ). The symbol • will be used in some matrix
expressions to induce a symmetric structure, that is if given
matrices L = Lt and R = Rt of appropriate dimensions, then

Fact 1: For any real matrices Σ1, Σ2 and Σ3 with appropriate
dimensions and , it follows that

2. PROBLEM STATEMENT
We consider a plant P to be represented by the following class
of time-delay systems:

where  is the state vector;  is the control
input, τ is a constant-but-unknown time-delay and the
uncertain matrices ,  and ,
are represented by

IR n

IR n n×

W IR n n×∈

∞
∞

Σ3
t Σ3 I≤

x t( ) ℜn∈ u t( ) ℜp∈

AΔ ℜn n×∈ BΔ ℜn p×∈ AΔd ℜn n×∈

(2.1)
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where , , , ,
,  and , are real and known

constant matrices with ∆p(t) is a matrix of uncertainties and
bounded in the form . In the absence of
uncertainties ( ), system (2.1) reduces to

It is a straightforward task to show that the nominal state-
feedback controller

renders system (2.3) asymptotically stable for arbitrary
constant delay  if given a matrix

 there exists a matrix 
such that the LMI

has a feasible solution. In practical situations, there are at least
two sources of inaccuracies when implementing controller
(2.4). The first source is obviously due to the presence of
uncertainties in the system matrices and the second source
arises from gain perturbations due to various reasons [1, 4].
Therefore, it is naturally to consider, for a given nominal
feedback controller u(t) = Ko x(t), that the actual implemented
controller is assumed to have two-terms:

where Ko is the gain matrix to be determined, K(t) represents
the gain perturbation, which is assumed to be norm-bounded of
the form:

where  is an upper bound to be dealt with in the
subsequent analysis and a(x) is an adjustable state-dependent
signal to be constructed to counteract the gain perturbation.

The problem of interest in this paper is to develop a feedback
stabilization scheme that ensures that the closed-loop system
of (2.1)-(2.3) is asymptotically stable. Among the various
possible approaches, we aim at constructing an adaptive
scheme to achieve the cited design objective. Needless to
stress the salient features of adaptive stabilization methods are
well-established [11].

The main results of this paper are divided into two parts: the
first part deals with delay-independent stabilization and the
second part treats delay-dependent stabilization. In either part
and to achieve our goal, we will proceed in two stages. In the
first stage, we attempt to construct an adaptive schemes for the
uncertain time-delay system (2.1) assuming that the gain
perturbation bound is known. Then in the second stage, we
extend the results to accommodate bounded-but-known gain

perturbations. All the established conditions are conveniently
expressed in the form of linear matrix inequalities (LMIs)[3].

3. DELAY-INDEPENDENT 
STABILIZATION

3.1 Known Perturbation Bound
When the gain perturbation bound is known, then the purpose
of adaptation is to accommodate the uncertainties of system
(2.1). The following adaptive scheme is proposed

where Ko represents a control gain matrix to be determined in
the sequel and g > 0, en denote a growth factor and a unit
vector of order n. A convenient Lyapunov functional V (.) is
given by

where  and . The
following theorem summarizes the first main result:

Theorem 3.1 System (2.1) under the adaptive controller (3.1)
is asymptotically stable if for a given scalar β > 0, there exist
matrices , ,

, ,  and scalars
,  satisfying the LMI

Moreover, the feedback gain is Ko = YX -1.

Proof: Evaluation of the derivative of Vn(t) along the solutions
of system (2.1)-(2.2) using adaptive controller (3.1) with some
algebraic manipulations yields (3.4) and (3.5).

From Lyapunov theory, it follows that  is guaranteed
if . By [9] with Fact 1, it follows that, see (3.6)

Using the congruence transformation T = diag[X I I], X = P-1,
defining Y = KoX and invoking the linearizations Z = XQX, L =
Bo Imn X, ω = Bo Koen, it is a straightforward task to show that
the stability condition holds if there exist a scaler ε > 0 such
that, see (3.7):

A Schur complement will convert (3.7) to (3.3) and thus the
proof is completed.

Remark 3.1 The dynamical relation of  consists of two-
terms: one is growth factor and the other is a product of  and
x so as to preserve inter-coupling between the states and the
gain factor. The value of the growth factor g > 0 guarantees
the asymptotic stability of system (2.1) under controller (3.1)
and its magnitude gives an indication of the speed of response.

A0 ℜn n×∈ B0 ℜn p×∈ C0 ℜq n×∈ Ad ℜn n×∈
M ℜn α×∈ Na ℜβ n×∈ Nd ℜβ n×∈

Δp t( )Δt
p t( ) I t∀≤

Δ 0≡

τ 0 τ∗→[ ]∈
0 Q Qt ℜn n×∈=< 0 P Pt ℜn n×∈=<

β 0>

0 P Pt IR n n×∈=< 0 Q Qt IR n n×∈=<

0 X Xt IR n n×∈=< 0 Q Qt IR n n×∈=<
Y IR m n×∈ 0 Z Zt IR n n×∈=< ω IR n 1×∈
g 0> ε 0>

V· n t( ) 0<
Ξn 0<

μ
μ

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(3.1)

(3.2)

(3.3)
11
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3.2 Unknown Gain Perturbation Bound
Now we consider the application of controller (2.6) subject to bound (2.7) where β is unknown. The following adaptive scheme is
then proposed

nΞ

(8)

(9)

(3.4)

(3.5)

(3.6)

(3.7)
12
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where h > 0 represents a growth factor. Note that scheme (3.8) is constructed in the same way as scheme (3.1). A convenient
Lyapunov functional V (.) is given by

The following theorem summarizes the second main result:
Theorem 3.2 System (2.1) under the adaptive controller (3.8) is asymptotically stable if there exist matrices ,

, , , ,  and scalars , , 
satisfying the LMI

Moreover, the feedback gain is K = YX -1.
Proof: An evaluation of the derivative of Vb(t) along the solutions of system (2.1)-(2.2) using (3.5) and adaptive controller (3.1),
yields:

Following parallel development to Theorem (3.2), it is readily evident that the stability condition  holds if there exist
scalers ε > 0

Using the congruence transformation T = diag[X I I I], X = P-1 and defining Y = KoX and invoking the linearizations Z = XQX, W =
XRX, ω = BoKoen, it follows that Schur operations converts (3.12) to (3.10) and hence the proof is completed.
Remark 3.2 In a similar way, each of the dynamical relations of  and consists of three-terms: one is growth factor and the others
are pair-wise products of , and x so as to preserve inter-coupling between the states and the gain factors. The values of the growth
factor g > 0, h > 0 guarantee the asymptotic stability of the closed-loop system and their magnitudes give indication of the speed of
response.

4. DELAY-DEPENDENT STABILIZATION
In order to develop delay-dependent criteria for stabilization, the dynamic model (2.1) is represented by the descriptor form:

0 X Xt IR n n×∈=<
0 Q Qt IR n n×∈=< Y IR m n×∈ 0 Z Zt IR n n×∈=< 0 W Wt IR n n×∈=< ω IR n 1×∈ g 0> h 0> ε 0>

V· n t( ) 0<

μ·
μ·

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
13
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Initially, we focus on the nominal feedback stabilization

4.1 Nominal State Feedback Stabilization
Under the control law u(t) = Kox(t) where Ko is the unknown gain matrix, system (4.1) using (2.2) becomes.

We introduce, for convenience, the following matrices

and provide the following stability result.
Theorem 4.1 System (4.2) is delay-dependent stabilizable under the controller u(t) = Kox(t) if there exist matrices

, , , ,  and scalars  satisfying the following LMI

Moreover, the gain matrix is .
Proof: Let the Lyapunov-Krasovskii functional V (·) of the transformed system be selected as:

Using (4.2) and (4.7), we get:

Simple manipulations using (4.2) yield:

0 Yx
t Yx IR n n×∈=< Yσ IR n n×∈ Yd IR n n×∈ 0 Qσ

t Qσ IR n n×∈=< Z IR n n×∈ ε 0>

K0 ZYx
1–=

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
14
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Using Fact 1, it follows that

Therefore from (4.8)-(4.10) we get:

It is straightforward to show that,

Using (4.4)-(4.5) and (4.11), it follows that

Since Vt(t) > 0, it follows from Lyapunov theory that ,  is a sufficient condition for stability which, in turn, entails
that . The latter condition under the congruence transformation  becomes:

Algebraic manipulation of (4.14) using (4.5) and Schur complement yields

In terms of Z = KoYx and applying Fact 1, inequality (4.15) reduces to

V· t 0> ζ t( )∀ 0≠
Π 0< Y IP 1–=

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
15
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for some ε > 0. Further Schur complement operations bring inequality (4.16) to LMI (4.6) as desired.
Remark 4.1 In implementing the LMI (4.6), we specify  τ and check the feasibility. The process is continued till a feasible solution is
failed to achieve and we record this point as . This means that the closed-loop system is delay-dependent asymptotically stable
over the range .
In the following sections, we consider adaptive stabilization schemes to deal with gain perturbations.

4.2 Adaptive Feedback Stabilization: Known Perturbation Bound
Consider that the gain matrix Ko is subject to perturbation Ko whose upper bound is known. In this case the adaptive scheme (3.1) is
applied to the transformed system (4.1) to yield the closed-loop system

Next consider the Lyapunov-Krasovskii functional V (·) as follows:

Using (4.17) and (4.19), we get:

Simple manipulations using (4.17) yield:

Using Fact 1, it follows that

τ∗
0 τ τ∗≤ ≤

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Therefore from (4.20)-(4.23) we get:

Let

Using (4.4)-(4.5), (4.12) and (4.24), it follows that

From Lyapunov theory that ,  is a sufficient condition for stability which, in turn, entails that . The latter
condition under the congruence transformation [IP-1 I], Y = IP-1 becomes:

The following stability result is established.

Theorem 4.2 System (4.2) is delay-dependent stabilizable under the adaptive controller (3.1) given the bound β if there exist
matrices   , , , ,  and a scalar  satisfying the
following LMI

Moreover, the gain matrix is .

Proof: Follows from a parallel development to Theorem 4.1 and using ω = BoKoen.

V· nt 0< ζ t( )∀ 0≠ Πn 0<

0 Yx
t Yx IR n n×∈=< Yσ IR n n×∈ Yd IR n n×∈ 0 Qσ

t Qσ IR n n×∈=< Z IR n n×∈ ε 0>

K0 ZYx
1–=

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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4.3 Adaptive Feedback Stabilization: Unknown Perturbation Bound
When the upper bound β is unknown, the adaptive scheme (3.8) will be used applied to the transformed system (4.1) to yield the
closed-loop system

where A∆Kd is given by (4.3). A convenient Lyapunov-Krasovskii functional is as follows:

Proceeding similar to the foregoing section, we get:

It follows from (4.9)-(4.10) and (4.30) that

Using (4.4)-(4.5), (4.12) and (4.31), we reach

The following theorem summarizes the main result:

Theorem 4.3 System (4.2) is delay-dependent stabilizable under the adaptive controller (3.8) if given a matrix ,
there exist matrices , , , , ,  and a scalar
ε > 0 satisfying the following LMI

0 Rt R IR n n×∈=<
0 Yx

t Yx IR n n×∈=< Yσ IR n n×∈ Yd IR n n×∈ 0 Qσ
t Qσ IR n n×∈=< Z IR n n×∈ ω IR n 1×∈

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Moreover, the gain matrix is .
Proof: Follows from a parallel development to Theorem 4.1 and using ω = BoKoen.

5. EXAMPLES
We demonstrate the theoretical developments by means of two examples.

5.1 Example 1
This example is motivated by the dynamics of bio-strata in water-quality studies on the river Nile [8]. A pilot-scale model of the
form (2.1) is described by:

The feasible solution of LMIs (4.27) attained using Theorem 4.2 along with other related methods are gathered in Table 1

A simple comparison reveals that the technique developed in this work yield larger admissible time delay factor and smaller adaptive
gain.

5.2 Example 2
The following example is motivated by the dynamics of machining chatter [9] with the matrices of system (2.1) given by:

K0 ZYx
1–=

Table 1. Computational Results of Example 1

(4.33)
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Once again, from the results presented in Table 2, the superiority of the developed adaptive schemes of this work are noted

Table 2. Computational Results of Example 2
6. CONCLUSIONS
Delay-independent and delay-dependent robust stabilization
schemes have been established for a class of continuous-time
systems with state-delays and norm-bounded uncertainties
against controller gain variations. State-feedback adaptive
controllers have been constructed for the cases of known gain
perturbation bounds and unknown norm-bounded
perturbations. Simulation results have been presented to
demonstrate the developed theory.
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protocols. It is thus possible to build dynamical models of
ABSTRACT
We propose a new technique that uses an observer to estimate the
current input into a neuron whose voltage is measured
electrophysiologically. As a by-product, one also obtains
information about the gating variables of the ionic channels. We
prove the global convergence of the observer for all voltage-gated
ion channel models within the Hodgkin-Huxley formalism. The
current observer can be implemented either offline or concurrently
with the recording. We illustrate the workings of the observer on a
well-known nonlinear neural model.

Keywords
Nonlinear Observer, Unknown Input Observer, Neuron,
Electrophysiological.

1. INTRODUCTION
Neurons communicate through synapses: pre-synaptic
neuronal membrane activity is transmitted across the synapse
via neurotransmitters that activate post-synaptic currents to
drive the neuron. Moreover, neurons exhibit subtle and
complex membrane activity. This nonlinear response is
influenced by both the intrinsic properties of the neuron as
well as the state of the network [1, 2]. 

The membrane voltage of an isolated neuron can be recorded
electrophysiologically, via an intracellular or extracellular
electrode. This voltage change is mediated by internal ionic
currents and the input current applied via the electrode. Thus,
in order to understand the characteristics of neuronal activity, a
neuron is stimulated with various current inputs, typically of
the stepping or ramping type. Variously, the voltage of a
neuron can also be clamped, i.e. held constant; in that case,
currents can be measured. The ionic properties of the channels
that comprise the membrane differ with the cell type. In
addition, neurons of a certain type exhibit individual
differences. Well-defined methods exist to characterize ion
channel kinetics based on voltage- and current-clamping
*Corresponding author: E-mail: klaus@roebenack.de 

All Rights Reserved. No part of this work may be reproduced, stored in retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise - except for personal and internal
use to the extent permitted by national copyright law - without the permission
and/or a fee of the Publisher.

Copyright © 2007 SoftMotor Ltd.              ISSN: 1743-9310
neuronal activity [3].

If a neuron in a network (tissue) is voltage-clamped, a current
response is a measure of the input received by it from its pre-
synaptic neighbours. Thus the effect of different inputs that
approximate physiological stimuli can be studied.
Unfortunately, this procedure is intrisically invasive. In
particular, this technique of measurement will interfere with
the neuron’s activity in the network. What is required is a
sensor that passively reports the current input without
interfering with the voltage activity. In this paper we develop a
method to determine the input current from the only available
measurement, i.e., from the membrane voltage.

Most traditional experimental techniques involving
electrophysiological measurements are open-loop: the neuron
is stimulated with either current or voltage and the
corresponding output is read-out. More recently, a feedback-
based technique has become popular: the so called dynamic-
clamp [4]. This allows, for example, the input current to a
neuron to be modified based on the voltage output. This
powerful technique has enabled the study of neuronal networks
that are coupled to computer models in real-time. Dynamic
clamping thus paves the way for the investigation of complex
combinations of coupled organic and artificial networks. A
passive observer of current is an ideal tool that can be used in
combination with the dynamic clamp to measure how global
stimuli applied to the system are transduced to presynaptic
current patterns at various individual neurons.

Mathematical models describing membrane dynamics in
neurons typically follow the formalism first described by
Hodgkin and Huxley [5]. The membrane voltage is given by a
system of ordinary differential equations, where the voltage
dynamics is coupled to several gating variables, which
describe the behavior of the ion channels in the membrane.
The dynamics of the membrane voltage V is governed by 

with a capacitance . The current I is injected into the
cell, either applied via an intracellular electrode, or from pre-
synaptic coupling to other cells. The sum on the right hand
side of (1) represents other currents which influence the
voltage dynamics, e.g. the leak current and currents flowing
through ionic channels. The associated electrochemical
gradients are represented by constant voltages Vj called

( )∑ −⋅−=
j

jj VVgIVC �

C 0>

(1)
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reversal potentials. The conductance gL associated with the
leak current is constant. In case of the other currents, the
conductances gj depend on so-called gating variables wi. More
precisely, each conductance gj usually consists of the maximal
value of the conductance multiplied with non-negative integral
powers of some wi. The dynamics of these gating variables is
governed by differential equations of the form

The functions  and  are positive for all V. Eq. (2)
result from a Markov model of the ith ionic channel. Each
channel has two states: open and closed. The functions 
and   denote the transition rates for opening and closing,
respectively. The gating variable wi denotes the probability
that the ith channel is in the open state. The number p of
equations (2) depends on the selected model. The whole model
(1)-(2) is a system of first order nonlinear ordinary differential
equations.

From a control-theoretic point of view, system (1)-(2) is a
single-input single-output state-space system with the input I
and the state variables V and . The output V
is measured. We propose a two-stage approach to estimate the
input I. First, we design an observer to obtain the state vector
w. Second, we use the information provided by the observer to
obtain an estimate of the input I using a filter.

We will use an observer to estimate those quantities of (1)-(2)
which are not measured directly. The problem of observer
design has received significant attention during the last
decades [6-8]. Classical observers provide an estimate of the
state based on input and output information [8]. These
observers are not applicable since the input I is not measured.

Extensions of observer theory have been made to systems with
unmeasured inputs. These observers are called unknown input
observers. The existence conditions for unknown input
observers of linear time invariant systems are well-known [9-
11]. For nonlinear systems, the existence conditions of
unknown input observers are not well established. Design
methods exist only for special classes of nonlinear systems.
The design method proposed in [12, 13] is based on a certain
decomposition of the system into two subsystems. In turns out
that systems of the class (1)-(2) are already decomposed into
this special form. We will employ this approach to design an
unknown input observer to estimate the unmeasured state
vector w.

The problem of real-time observation of an input occurs also in
communication by chaotic signals [14]. In theory, we would
use the inverse system approach suggested in [15, 16]. In that
case, however, we have to differentiate the measured output
numerically. Unfortunately, numerical differentiation by
divided difference schemes in not reliable. To circumvent this
problem, we design an additional low-pass filter to generate a
smoothed estimate of the input.

This paper is structured as follows. In Section 2 we derive our
estimation algorithm. We apply our method to a particular cell
model in Section 3. The conclusions are given in Section 4.

2. OBSERVER AND FILTER DESIGN
First, we discuss the possible usage of conventional observers.
Next, we design an unknown input observer of the system and
show its convergence. Finally, a filter is employed to estimate
the input.

2.1 Conventional Observers
The class of models described by (1)-(2) has the form

with the measured output V and the unknown initial value w0.
The first subsystem (3) is 1-dimensional, whereas the
dimension  p of the second subsystem (4) depends on the
model under consideration. Note that maps f and g are
nonlinear.
In the beginning, we discuss the design of the observer to
estimate the unknown state variables. In the last decades,
several techniques for a systematic observer design have been
developed [6-8, 17]. Most of these methods are not directly
applicable because they require an explicit knowledge of the
input signal. Therefore, we have to modify the model (3)-(4).
A possible approach is to assume that the input signal varies
slowly or changes only occasional between different regimes.
In other words, we assume that the input signal is “almost”
constant. This information can be incorporated into the model
by an augmentation of (3)-(4) with a further differential
equation . The resulting -dimensional model 

is autonomous. This augmentation of the original system is a
common approach in observer-based parameter estimation [18,
19]. Indeed, this idea is also used to design observers for
systems with unmeasurable inputs [9]. Theoretically, one could
apply arbitrary observer design methods to (5). In fact, we
tried this approach in the beginning.
For linear systems, the observer design problem has been
solved by Luenberger [20, 21], see also references cited in
[22]. The design procedures of linear systems can be applied to
the linearization of a nonlinear system, provided the systems
trajectory stays in a neighbourhood of a given operating point.
Unfortunately, this is not the case here, because the system
shows large oscillations.
The first mathematically justified approach to design observers
for nonlinear systems was developed by Thau [23]. The idea is
to dominate the nonlinearities by a sufficiently large linear part
in the error dynamics. The choice of the observer gain vector is
not based on a local linearization but on global Lyapunov
techniques [24, 25]. These design methods did not work for
our systems because the large observer gains made the
numerical integration of the observer’s equations utterly
impossible.
The development of differential geometric methods in
nonlinear control gave rise to a whole class of new observer
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OBSERVER BASED MEASUREMENT OF THE INPUT CURRENT OF A NEURON
design methods [26-30]. For all these methods, to obtain the
observer gain one needs to compute certain Lie derivatives
symbolically. The systems in our application are highly
nonlinear. We obtained very large and complicated expressions
for the observer gains (thousands of lines of C code). At best,
the resulting observer did not diverge, but we were not able to
extract a reasonable estimate for I.
For our point of view, conventional observer design techniques
are not suitable to solve our estimation problem.

2.2 Unknown Input Observers
Now, we will design an unknown input observer. Design
procedures are well-established for linear time-invariant
systems [9-11]. Only a limited number of design methods exist
for nonlinear systems. Our approach is based on [12, 13]. We
take the structure of system (3)-(4) into account. This system is
already decomposed into two subsystems. The crucial point is
that the second subsystem (4) depends not explicitly on the
input I. More precisely, system (3)-(4) is already in the
Byrnes-Isidori normal form with relative degree one [31].
The state V of the first subsystem (3) is measured. As an
observer for w we suggest a copy of subsystem (4), which is
driven by the measured output: 

The observation error  is governed by the error
dynamics 

The trajectory  of the observer (6) converges to the state w of
(4) for  if the equilibrium  of the error dynamics
(7) is asymptotically stable uniformly in V. In other words, we
assume that for all V we have  as

. Then, subsystem (4) is said to have a steady state
solution property [32]. We will show in Section 2.3 that the
class of systems discussed here poses this property. Since the
state of subsystem (3) is already known by measurement, the
whole system (3)-(4) is detectable [32].
In contrast to conventional observers, we have no observer
gain to adjust the convergence rate of the observer (6). In so
far, our observer is similar to so-called asymptotic observers
known from biological and chemical process control [33, 34].
Moreover, observer (6) is a reduced observer since we
reconstruct only subsystem (4). Combining the measured
voltage V and the observer trajectory  yields an estimation of
the whole state of (3)-(4), even though the input I is
unmeasured. 

2.3 Stability Analysis
We show here that the observer (6) converges globally. In
particular, we also claim that this type of observer is applicable
to all cell models of the Hodgkin-Huxley type [5]. In addition
to the Connor-Stevens model which will be introduced in
Section 3, this class of models includes several other well-
known models such as the Morris-Lecar model [35], the
FritzHugh-Nagumo model [36, 37], and the Traub model [38,
39], to name a few. If additional information is available, it is
possible to extend the current observer we present here to other
ion channels that are not just voltage-gated, but are also
modulated by intracellular activity, e.g. to use the observer

with a bursting model of pancreatic beta-cells [40],
simultaneous measurements of calcium and adenosine
triphosphate (ATP) would be required.

In our application, we consider models of the type (3)-(4),
whose underlying structure is given by (1)-(2). The observer
(6) is designed for the p equations of the type (2) with
functions  and . To prove the convergence of the
observer we consider the difference between the original
system and the observer. We show that this difference goes to
zero using Lyapunov stability theory.

The equations (2) of system (4) have the form 

for . The corresponding observer

with the initial value  is excited by the measured
voltage V. The observation error of the ith gating variable is
defined by . The associated error dynamics is
governed by

with an initial value . We use the
continuously differentiable candidate Lyapunov function 

with the vector-valued argument . The
function Y is positive definite since it is a quadratic form, i.e.,

 and  for all . Moreover, Y is radially
unbounded, i.e.,  for . The total derivative
of  along the error dynamics (10) is calculated as 

The quadratic terms are always non-negative. If  is not the
zero vector, at least one term  is strictly positive. Moreover,
we have  for all V by construction. (Recall that
these functions are transition rates resulting from a Markov
model.) Therefore, we have 

Hence, by Lyapunov’s Theorem [41], the equilibrium 
of (10) is globally asymptotically stable, i.e.,  for

 and any initial value . This implies
 for , that is, the trajectory  of the

observer (9) converges to the trajectory  of the original
system (8) for .

2.4 Input Estimation
Now, we make use of the information generated by the
observer (6) to obtain an estimate of the current I. For known
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trajectories of V and w we could compute the input I exactly
from (3) by 

Since w is not available directly but estimated by the observer
(6), we consider an estimate  of I defined by 

For a continuous map f we have  for  if
 for , i.e., the estimation (12) converges to

the exact input (11) provided the observer (6) converges to
subsystem (4). Using the inverse system approach [15, 16], one
would estimate I by (12). However, we measure V but not its
time derivative . A numerical computation of  from V by
divided differences provides only a rough estimate of the
derivative.
Up to now, we assumed that the voltage V generated from (3)-
(4) is exactly known. In practical applications we also have to
take disturbances such as noisy measurement into account.
More precisely, we augment the exactly known voltage V by an
additive disturbance signal  ε. If we replace V in Eq. (12) by
the measured voltage , the estimated current  would
not only depend on the disturbance ε but also on its time
derivative . This is disadvantageous especially if the
disturbance signal is indeed random noise.
To avoid an explicit computation of    and to attenuate the
influence of the disturbance  ε we use a filter. More precisely,
for the right hand side of (12) we use a low-pass filter with a
continuous time transfer function

of order . The coefficients  have to be chosen
such that all poles of (13) are in the open left half plane. In the
time domain, a filter given by (13) is a linear operator. In the
following, we denote the action of a filter with the transfer
function T on the signal  by . The application of (13) to
(12) yields the filtered signal 

We assume that  for . Between V and its time
derivative  there holds , where L
denotes the Laplace transform. This results in ,
i.e., instead of filtering the time derivative    by (13) we filter
the measured trajectory V by 

The filtered estimate (14) is obtained by

Taking the common denominator of (13) and (15) into account,
Eq. (16) can equivalently be written

In (17), the numerator degree does not exceed the denominator
degree, i.e., the transfer function is proper. Hence, the filter
(17) can be implemented without differentiators. The whole
estimation scheme is shown in Fig. 1.

The purpose of the filter is to enhance the desired signal   
relative to disturbances such as noise. Here, the filtering is
done on the basis of a suppression of selected frequencies to
damp interfering signals. Since the current I is nearly constant,
a natural choice for the filter is a low-pass. The most important
parameter of a low-bass filter is its cut-off frequency , at
which the gain drops by some specified amount. Although
there are many possibilities to design a low-pass filter, in most
applications Butterworth, Bessel, Chebyshev and Cauer (or
elliptic) filters are used [42]. For our experiments we
employed a Bessel low-pass filter.

Figure 1. Reconstruction scheme for current I based on 
measurement of voltage V

3. APPLICATION TO THE CONNOR-
STEVENS MODEL

We demonstrate the estimation algorithm on a cell model
derived by J. A. Connor and C. F. Stevens [43]. Like the
Hodgkin-Huxley model of nerve activity of the squid giant
axon, the Connor-Stevens model describes important aspects
of the biophysical behaviour of gastropod neuron somas. Here,
in addition to the delayed-rectifier potassium, fast sodium and
leak currents as in the Hodgkin-Huxley model, there is also an
A-type potassium current. It is a well-studied model of Type 1
excitability: its periodic activity is the result of a saddle node
bifurcation at current threshold [44, 45]. Several neurons,
including the regular-spiking neurons of the somatosensory
cortex display Type 1 behavior. For a more complete
discussion of neuronal activity from the point of view of
bifurcation theory we point to [2, 46].

The voltage dynamics read as 
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( )ŵ,ˆ VfVCI −= �

Î t( ) I t( )→ t ∞→
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OBSERVER BASED MEASUREMENT OF THE INPUT CURRENT OF A NEURON
with the input current I and . The model has a
leak current IL, one current INa for the sodium ions (Na+), and
two currents IK and IA for the potassium ions (K+). These
currents are given by 

with the conductances ,
, , ,

the reversal potentials , ,
, , and the dimensionless gating

variables m, h, n, a, b. The equivalent circuit representation of
Eqs. (18) and (19) is shown in Fig. 2.

Figure 2. Equivalent circuit representation of the Connor-
Stevens model (19)

Figure 3. Output voltage generated from the Connor-Stevens 
model without and with measurement noise

The gating variables m, h, n influence the ionic currents INA
and IK. The additional ionic current IA depends on the gating
variables a and b. Although both currents IK and IA are carried
by potassium ions, the model does not require that the reversal
potentials VK and VA are equal. The gating variables are
governed by the differential equations

with the functions 

and

The first three equations of (20) are already in the form (2),
and the last two equations of (20) can easily be rewritten into
(2).
For the simulation we use the initial values V(0) = -64.453mV,
m(0) = 0.0159, h(0) = 0.9437, n(0) = 0.196, a(0) = 0.0559, b(0)
= 0.2175 and the current signal 

This signal can be interpreted as follows: For
, a low value of background activity leaves

the neuron close to its resting state. At t = 100 ms, a stimulus
arrives at the neuron and kicks the neuron with an excitation
and induces a repetitive firing. From a mathematical point of
view, this qualitative change in the system’s behaviour is due
to a saddle-node bifurcation that gives rise to oscillations
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emerging with arbitrarily low frequencies. The resulting
oscillations are shown on the top of Fig. 3.
The measured voltage of the Connor-Stevens model (18)-(20)
is used to reconstruct the other state variables m, h, n, a and b.
The unknown input observer (6) consists of a copy of Eqns.
(20), which are driven by the measured voltage V of (18): 

Since we have no further knowledge of these variables at
, we use the zero vector of  as an initial value of the

observer (22). The simulation was performed with Simulink®,
where the two subsystems of (18)-(20) are implemented as so-
called S-functions [47]. The simulation results shown in Fig. 4
indicate that the unknown input observer (22) converges.

Figure 4. Trajectories of Connor-Stevens model and the 
unknown input observer (22)

In addition to the ideal case of an undisturbed voltage
measurement we also consider the perturbed case. In
particular, to the output voltage V of (18) we add band-limited
discrete time white noise with sample time  0.1ms and power
0.1. The output voltages with and without noise are shown in
the aforementioned Fig. 3. To estimate the current I by (16) we
need to choose a low-pass filter and the poles of the transfer
function (13). For the suppression of the artificially introduced
measurement noise we use a 4th order Bessel filter. First, the
filter is designed with a cut-off frequency  rad/ms. The
filtered current  for the unperturbed case and for five
realizations of random output perturbations is shown on the top
of Fig. 5. Although the increase of I from 5mA to 10mA at

 ms can be deduced from a visual inspection, the level
of the perturbations is not yet satisfying. For a better
suppression of the noise we decrease the cut-off frequency of
the filter to    rad/ms. The result is also shown on the

bottom in Fig. 5. As expected, we obtain relatively smooth
curves for . The drawback of a lower cut-off frequency is a
slower transient behaviour. In general, after some transients we
obtain a good estimate  of I. However, we still have some
deviations from the exact values of I at , , and

 ms. At this point we should recall that the combination
of the nonlinear unknown input observer (6) with the linear
filter (13) yields a nonlinear filtering scheme. 

Figure 5. Estimated current  for the Connor-Stevens model

4. CONCLUSIONS
A direct measurement of the synaptic input driving a neuron,
especially in vivo, is a challenging problem. We have
presented here an observer based technique useful for
determining the current input into a neuron whose membrane
voltage is measured directly. Observers for synaptic current
could be used to implement a sensor with a minimal of
interference in vivo. Theoretically, they solve the inverse
problem of determining the input from the measured output.
Additionally, the observer also recovers the time courses of the
gating variables which cannot be directly measured. Such a
capability clearly enlarges the scope of useful information that
can be obtained from electrophysiological recordings. An
observer for synaptic current can be used quite generally in any
context that a neuron is recorded from, and especially
effectively in studying small networks. They can thus have a
variety of practical applications.

During the last decades, several conductance based neural
models have been developed after the fashion of Hodgkin and
Huxley [5]. On the other hand, mathematical analyses of the
dynamical properties of neurons continue to provide
considerable understanding of the behavior of neuronal
networks from a theoretical point of view. Current observers
can potentially be used for a direct and independent
verification of theoretical models. The technique of effective
current observers promises to bridge the gap between
speculative theoretical modeling and direct experiment even
further.

The observer design procedure employed in this paper is based
on two assumptions. On the one hand, the system must be
transformable into (3)-(4). By this, the system is decomposed
into two subsystems, where the state of the first subsystem is
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known from measurement and the second subsystem does not
explicitly depend on the input signal. On the other hand, the
second subsystem must have a special stability property. If
these assumptions hold, our design method can also be applied
to other systems outside of cell biology.
The stability result of the observer is based on the assumption
that the voltage is observed noiselessly. We showed by
simulation that the suggested estimation scheme also works
under noisy measurement, even though the estimated current
signal does not have the same quality as in the unperturbed
case. The attenuation of these disturbances as well as the
adaption of model parameters will be subject of further
research.
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ABSTRACT
In this paper, we present an algorithm for the space vector pulse
width modulation (SVPWM) applied to three-level diode clamped
inverter. In this algorithm, the space vector diagram of the three-
level inverter is decomposed into six space vector diagrams of
two-level inverters.  This idea allows us to generalize the two-level
SVPWM algorithm into the case of three-level inverter. The
redundant vectors of the space vector diagram of three-level
inverter are used to control its neutral point potential using a closed
loop.

Keywords
Three-level Inverter, Space Vector Pulse Width Modulation
(SVPWM), Neutral Point Potential Control.

1. INTRODUCTION
The standard two-level voltage source inverter is composed of
only one switching cell per phase. So, in the field of high
power drive systems, the level of dc-bus voltage constitutes an
important limitation on the handled power. On the other hand,
the very high dv/dt generated with high dc-link voltage is
responsible for the electromagnetic interference and motor
winding isolation stress [1]. 

Multi-level converters offer an approach to solve these
problems. In this kind of converters, the output voltage can
take several discrete levels of equal magnitude. The multilevel
inverter, first proposed in [2], was aimed to reduce the
harmonic content of generated voltage and current waveforms.
If compared with a two-level waveform, the harmonic content
of such a waveform is greatly reduced. The performance of
multilevel inverter depends mainly on the pulse width
modulation method that used. Various multilevel pulse width
modulation strategies have been developed and studied [3-6].
Among these strategies, space vector pulse width modulation
(SVPWM) is more suitable for digital implementation and
switching waveform optimization. 

Several works apply the space vector modulation to multilevel
inverters [7-10]. These works use a typical method that
*Corresponding author: E-mail: lalilidjaafer@yahoo.fr
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approximates the output voltage using the three nearest output
vectors. When the reference vector changes from one region to
another, it may cause intense change in output voltage. In
addition, we need to calculate the switching sequences and
switching time of the states at every switching period. Thus the
computation time increase with the increasing number of the
reference vectors. This is a main limitation of the application
of this typical SVPWM.

Recently, several attempts have made to explore a simple, fast
and generally applicable multilevel space vector modulation
algorithm. One of the new trends is to convert the SVPWM
equations into a new form using an appropriate co-ordinate
system [11-15]. In [11], a method of SVPWM for high level
inverters that represents output vector in three-dimensional
Euclidean space is presented. The method is based on the fact
that increasing the number of levels by one always forms an
additional hexagonal ring of equilateral triangles, which
surrounds the outermost hexagon. In [12], the used method
transforms the space vector diagram from Cartesian
coordinates system to 60° coordinate system. In [13], sum
manipulations allow to simplify space vector diagram of three-
level inverter into space vector diagram of two-level inverter.
In [14], the hexagon representing space vector diagram is
flatten and the reference voltage vector is normalized in order
to reduce computations of the algorithm. The method used in
[15] adds to SVPWM a predictive current control loop. The
load current is predicted for all output voltage vectors of the
inverter. The current error is calculated and the switching state
that ensures the smallest value of this error is selected.

Although these methods propose general SVPWM algorithms
for multilevel inverter, the coordinate transformations used in
these algorithms are somewhat complicated. In this paper, we
present a simple and fast modulation algorithm based on
geometrical considerations in the case of three-level inverter.
Using the idea given in [13], and adding simplifications and
best geometrical presentation, the space vector diagram of a
three-level inverter is decomposed to six space vector diagram
of a two-level inverter. The computational effort using the
proposed method and the complexity of the algorithm are
reduced compared with other conventional space vector
modulation techniques. This algorithm is general and can be
used in any high-level inverter, as made in [16] in the case of
five-level inverter.

One important problem associated with three-level inverter is
the neutral point potential variation. The current in neutral
point produce ripple in the capacitor voltages. This ripple may
cause low-order harmonic contents in the output voltages. The
unbalance of dc-voltages will also cause excessive voltage
pressure on switches.

Several methods are proposed to suppress the unbalance of
neutral point potential, generally using redundant vectors.
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Some of these methods are based on adding a zero sequence or
a dc-offset to output voltage [17, 18]. In [19, 20], power
electronics circuitry is added to redistribute charges between
capacitors. A method based on minimizing a quadratic
parameter that depends on capacitor voltages is presented in
[21]. This quadratic parameter is positively defined and reach
zero when the two capacitors have the same voltage. Some
other works use a converter-inverter cascade [22], and apply
automatic control methods, such as fuzzy logic control [23] or
sliding mode control [24] to this cascade. The drawback of
these methods is either high costs and system complexity, or
the use of open loop scheme. In this work we use a simple and
closed loop method which makes a continuous measurement of
output current and difference between capacitor voltages, and
chooses the redundant vector on the basis of these
measurements.

Figure 1. Two-level inverter structure

In this paper, firstly we present space vector modulation for
two-level inverter and space vector diagram for three-level
inverter. Subsequently, we present a simplified space vector
modulation by noting that space vector diagram of three-level
inverter is equivalent to six space vector diagrams of two-
level inverter. Next, we present a neutral-point potential
balancing algorithm based on real time measurement of load
current and input dc-voltages. The proposed methods are
verified through simulation.

2. SPACE VECTOR MODULATION FOR 
TWO-LEVEL INVERTER

Fig. 1 shows structure of two-level inverter. Each one of the
three phases of the inverter has two switches and two
freewheeling diodes. The inverter is supplied from a dc-
voltage Vdc. The output phase voltages are va, vb and vc. For
each phase, we define a switching signal as:

Depending on the values of switching signals Fa, Fb and Fc,
the two-level inverter has eight states, summarized in table 1,
where it is also indicated the output voltage vector produced in
each state. These output vectors are shown on the space vector
diagram of Fig. 2, together with an arbitrary reference vector
V*, to be generated by the inverter. Note that in addition to the
six non zero vectors produced in states 1 through 6 of the
inverter, two zero vectors, v0 and v7 are also indicated on the
diagram. These correspond to states 0 and 7, see Table 1. 
Only vectors v0 through v7 can be produced at a given instant
of time. Therefore, vector V* represents an average rather than

an instantaneous value, the average being taken over a period
of the so called switching interval, Ts, which constitutes a
small fraction of switching period, T, of the inverter. Therefore
we can write: 

where n is the number of switching interval per period. The
switching interval in the center of which the reference voltage
is located, is shown in Fig. 2 as the shaded segment.

The non-zero vectors v1 through v6, divide the period cycle
into six, 60o-wide sectors. The desired voltage vector, V*,
located in a given sector, can be generated by a linear
combination of the two adjacent base vectors, vx and vy, which
are framing the sector, and either one of the two zero vectors:

Figure 2. Space vector diagram of two-level inverter

where vz is the zero vector, while dx, dy, and dz denotes the so
called duty ratios of states X, Y, and Z of the inverter within the
switching interval, respectively. For example, the reference
voltage vector V* in Fig.2 is located within a sector in which vx
= v4 and vy = v6, hence it can be produced by an appropriately
timed sequence of states X = 4, Y = 6, and Z = 0 or 7 of the
inverter.
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The duty ratios dx, dy and dz of states X, Y and Z are calculated
as [25]:

where m is the modulation index, adjustable within the 0 to 1
rang, and θ denotes the angular position of vector V* inside the
sector. 

Due to the freedom of choice of the zero-vector states Z,
various state sequences can be enforced in a given sector.
Efficient operation of the inverter is obtained when the state
sequences in consecutive switching intervals are 

where Z = 0 in sectors v6-v2, v3-v1 and v5-v4, and Z = 7 in the
remaining sectors

Figure 3. Three-level inverter structure

3. THREE-LEVEL INVERTER CIRCUIT
A three-level diode clamped inverter is shown in Fig. 3. Each
leg is composed of two upper and lower switches with anti-
parallel diodes. Two series dc-link capacitors split the dc-bus
voltage in half, and six clamping diodes confine the voltages
across the switches within the voltages of the capacitors. The
necessary conditions for the switching states for the three-level
inverter are that the dc-link capacitors should not be shorted,
and the output current should be continuous. As indicated in
Table 2, each leg of the inverter can have three possible
switching states, P, O, or N. When the top two switches Sx1 and
Sx2 (x = a, b, c) are turned on, switching state is P. When the
medium switches Sx2 and Sx3 are turned on switching state is
O. When the lower switches Sx3 and Sx4 are turned on, the
switching state is N.

Fig. 4 shows the space vector diagram for three-level inverter.
The output space vector is identified by combination of
switching states P, O or N of the three legs. For example, in the
case of PON, the output terminals a, b and c have the potentials
E, 0, and –E respectively. Since three kinds of switching states
exist in each leg, three-level inverter has (33 = 27) switching
states, as indicated in the diagram. The output voltage vector
can take only 18 discrete positions in the diagram because
some switches states are redundant and create the same space
vector. In Fig. 4, it is also indicated an arbitrary reference
vector V*, to be generated by the inverter.

Figure 4. Space vector diagram of a three-level inverter

4. SIMPLIFIED SVPWM FOR THREE-
LEVEL INVERTER

The space vector diagram of multilevel inverter can be divided
into different forms of sub-diagrams, in such a manner that the
space vector modulation becomes more simple and easy to
implement, as made in several works [11-15]. But these works
do not reach a generalization of the two-level SVPWM to the
case of multilevel inverters; either they divide the diagram into
triangles, or into interfered geometrical forms. In this work, we
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present a simple and fast method that divides the space vector
diagram of three-level inverter into six small hexagons. Each
hexagon is space vector diagram of two-level inverter, as
shown in Fig. 5.

Figure 5. Decomposition of space vector diagram of a three-
level inverter to six hexagons

Doing so, the space vector modulation of three-level inverter
becomes very simple and similar to that of conventional two-
level inverter space vector modulation. This method can be
used also for higher level inverters, as we made in [16] for the
case of five-level inverter. To reach this simplification, two
steps have to be done. Firstly, from the location of a given
reference voltage, one hexagon has to be selected among the
six hexagons. Secondly, we translate the origin of the reference
voltage vector towards the centre of the selected hexagon.
These steps are explained in the next section.

Figure 6. Division of overlapped regions

4.1 Correction of reference voltage vector
Having the location of a given reference voltage vector V*, one
hexagon is selected among the six small hexagons of the three-
level space vector diagram. There exist some regions that are

overlapped by two adjacent small hexagons. These regions will
be divided in equality between the two hexagons as shown in
Fig. 6. Each hexagon is identified by a number s defined as in
equation (6).

θ denotes the angular position of vector V*, indicated on Fig.
4.

After selection of one hexagon, we make a translation of the
reference vector V* towards the center of this hexagon, as
indicated in Fig. 7. This translation is done by subtracting the
center vector of the selected hexagon from the original
reference vector. Table 3 gives the components d and q of the
reference voltage V2* after translation, for all the six hexagons.
The index (2) or (3) above the components indicate two or
three-level cases respectively.

Figure 7. Translation of reference voltage vector

 

1 

2 3 

4 

5 6 

-1            if          
6 6

2            if          
6 2

53            if         
2 6       
5 74            if         
6 6

7 35            if           
6 2

36            if      
2

s

π πθ

π πθ

π πθ

π πθ

π πθ

π θ

< <

< <

< <
=

< <

< <

<
11   

6
π

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪

<⎪⎪⎩
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4.2 Sequence of switching states
Once the corrected reference voltage V2* and the
corresponding hexagon are determined, we can apply the
conventional two-level space vector PWM to the inverter, as
explained in Section 2. The reference voltage vector V2* is
approximated using the nearest three states, which are nodes of
the triangle containing the vector, identified as X, Y, and Z.
For example, in the case of Fig. 4, X is the state PNN, Y is the
state PON, while Z is either the state POO or the state ONN.
The optimum sequence of these three states is selected so as to
minimize the total number of switching transitions and fully
optimize the harmonic profile of the output voltage. Note that
from two-level space vector modulation theory, it is well
known that these sequences should be reversed in the next
switching interval for minimum harmonic impact [26, 27]. 

5. RESULTS AND DISCUSSIONS

Figure 8. Outputs waveforms for sequence ZXYZYXZ

5.1 Effect of state sequences
In order to show the influence of the choice of the state
sequences on the harmonics of the output voltage, we simulate
the space vector algorithm for two state sequences.
Firstly, we consider the sequence ZXYZYXZ. This sequence
means that in each triangle of the reference voltage vector
diagram, the reference voltage vector is composed using the
nodes of the triangle in turn and in reverse. For example, if the
output voltage is in the hashed triangle of Fig.4, the sequence
of the output voltage is: (ONN) - (PNN) - (PON) - (POO) -
(PON) - (PNN) - (ONN). This sequence produces the
waveforms of phase output voltages indicated on Fig. 8.
Secondly, we simulate the sequence ZOZXYZXYZZO that,
other than the three node-vector of the triangle containing the
reference vector, add the state NNN (noted as ZO), which is
the centre of the space vector diagram, in order to synthesize
the reference vector: (NNN) - (ONN) - (PNN) - (PON) - (POO)
- (PNN) - (PON) - (ONN) – (NNN). Starting and ending state
is NNN in every switching interval. The state NNN is added to
avoid the problem of the abrupt change in output vector when
passing from a triangle to another.
We simulate the association of the three-level inverter with an
induction motor. Table 4 gives the simulation parameters of
the inverter and the motor. The simulated output voltage and
its harmonics spectrum for the proposed sequences are given in
Fig. 9 and 10. We show that the harmonics of the output
voltage are centred on multiples of 50.n frequencies, where n is
the number of switching intervals per period of the output
voltage. We show this clearly when we make zoom of the
spectrum. By comparing the results given by the two
sequences, we show that the sequence (ZXYZXYZ) gives best
performances, because the amplitudes of the lowest harmonics

are most reduced in this case. The sequence ZOZXYZYXZZO
gives less quality of harmonics spectrum, but this is acceptable
because the main goal of this sequence is to avoid abrupt
changing of switching states.

Figure 9. Output phase voltage and its harmonics spectrum for 
sequence ZXYZYXZ
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Figure 10. Output phase voltage and its harmonics spectrum 
for sequence ZOZXYZYXZZO

5.2 Effect of number of switching intervals
The pulse width modulation is characterized by the switching
frequency being higher than the output frequency. The higher
the ratio of switching frequency to output frequency, the
higher is the quality of the output voltage so obtained. This
ratio is proportional to the number of switching intervals n. 

To show the effect of number of switching intervals on the
output voltage of the inverter, we simulate the space vector
modulation for n = 60, n = 120, and n = 210. Simulation results
are given in Fig.11. We sea clearly that the quality of output
voltage is better for higher values of n. However, high
switching frequencies results in proportionately high switching
losses in the inverter switches. Therefore, the switching
frequency must represent a reasonable trade-off between the
quality of output waveforms and the efficiency of the inverter.

5.3 Analysis of the neutral point potential 
variations

The mean problem associated with three-level inverter is its
neutral point potential variation. Under certain conditions,
such as acceleration or deceleration, the current flowing in this
neutral point causes variation of its potential.

In the space vector diagram of three-level inverter (Fig. 4), we
can distinguish four types of vectors: large vectors, medium
vectors, small vectors and zero vectors. The large vectors are
the vectors that all of the three legs are connected to either
point P or N, except in the case of all the three being connected
at the same point. There are six large vectors in the space
vector diagram: PNN, PPN, NPN, NPP, NNP and PNP. The
medium vectors are the ones that only one phase is connected
to point O and other two phases are connected to P and N each
other. There are six medium voltages: PON, OPN, NPO, NOP,
ONP and PNO. The small vectors are those vectors that have
two phases connected at the same point. There are twelve of
them: PPO, OON, OPO, NON, OPP, NOO, OOP, NNO, POP,
ONO, POO and ONN. The zero vectors are the vectors that
have all three phases are connected at the same point. There
are three zero vectors: PPP, OOO and NNN.

To show the effect of each type of vectors on the neutral point
potential, we present the load connections of one example of
each type in Fig.12. It may be easily deduced from Fig.12.a
and Fig. 12.d that neither zero vectors nor large vectors inject
current in the neutral point N. So they do not change the
voltage of neutral point.

Fig.12.b shows that medium vectors can inject current in
neutral point if the load is unbalanced or nonlinear. Fig.12.c1
and Fig.12.c2 show two small vectors with two different
switching combinations: (POO) and (ONN). These two vectors
produce the same output voltage, but when the vector POO is
applied, the current flows into the neutral point (iNP = -ia),
while with the vector ONN, the current flows out (iNP = ia).

Table 5 shows the currents injected by all small and medium
vectors [28]. As we see, each small redundant vector can inject
either positive or negative current. Those small vectors
injecting positive phase currents into the neutral point will be
called positive vectors (ONN, PPO, NON, OPP, NNO, POP),
while those injecting opposite phase currents will be called
negatives vectors (POO, OON, OPO, NOO, OOP, ONO).

Medium vectors also affect neutral point potential. However,
as they are not redundant vectors, this influence will not be
controlled, being therefore considered as perturbation for the
dc-voltage stabilization [8, 19].

5.4 Neutral point potential control method
The model of the input dc-voltage of the inverter is given as
[29]:

1
1

2 2

1 2

. . . . . .1 1 1 1 2 2 1 2 2 3 1 3 2
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Figure 11. Effect of switching intervals number on spectrum of output voltage
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b. n=120

c. n=210
Figure 12. Neutral point connections
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Table 5. Neutral point current for different space vectors
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where Vdc1 and Vdc2 are capacitors voltages, iNP is the neutral
point current, id1, and id2 are input currents of the inverter, and
Fij (i = 1,3, j = 1, 4) are switching signals of inverter switches,
as indicated on Fig. 3.

The neutral point potential control is based on the use of both
two redundant vectors in each sector, in order to inject positive
or negative current in neutral point, depending on the value of
the voltages of the two capacitors Vdc1 and Vdc2, and the load
current:

If we have Vdc1>Vdc2, in order to make Vdc1= Vdc2 we must
inject a current either from O to P in order to reduce Vdc1, or
from O to N in order to increase Vdc2. In both two cases, we
have iNP< 0.

If we have Vdc1<Vdc2, in order to make Vdc1=Vdc2, we must
increase Vdc1 by injecting a current from P to O, ore decrease
Vdc2 by injecting a current from N to O. In both two cases, we
have iNP >0. 

Therefore, for insure the neutral point potential control we
have to ensure the following relationship between Vdc1, Vdc2
and iNP: 

Figure 13. Scheme of Neutral Point Potential Control

Medium vectors influence will not be controlled, being
therefore considered as a perturbation for the neutral point
potential control. But if the load of the inverter is in balance,
the currents injected by medium vectors will be cancelled
mutually. In deed, for example the medium vectors PON and
NOP inject the same current ib as shown in Table 5, but there
positions on the space vector diagram (Fig. 4) are symmetric
regarding to the origin. Then their output voltages are equal
and opposite in sign. So their phase currents are equal and
opposite in sign, because the load is balanced.

The control scheme of the neutral point potential is given in
Fig. 13. We make a continuous measurement of the two dc-
voltages Vdc1 and Vdc2 and the neutral point current iNP given
by equation (8). We calculate the product (Vdc1 – Vdc2). INP. If
this product is negative we kept the set of small vectors
(positive or negative one) used in the previous sample of time.
Otherwise we must change this set of small vectors in the
previous sample of time in order to inverse the sense of the
neutral point current iNP. 

We simulate the association of dc-voltage input three-level
inverter and induction motor, with introduction of the control
loop. Simulation results on Fig. 14 show that before a brief

transient period, the two dc-voltages being take equal and
constant values (500V). The different between the two
voltages tends to zero, even if we apply a load torque. This
result prove the efficiency of the given control scheme which
is simple but powerful.

Figure 14. Controlled input voltages and current

6. CONCLUSIONS
In this paper, a simplified space vector pulse width modulation
algorithm has been described and applied to three-level
inverter. Through the decomposition of the space vector
diagram the complicated three-level space vector modulation
algorithm is simplified into two level cases. This simplified
method has the following advantages.
• It reduces the execution time of the three-level inverter

modulation
• It allows saving memory of the controller in case of

experimental realization.
• The most important aspect of this algorithm lies in its

generality. It can be used in any high-level inverter.
The neutral point potential can be easily controlled using
redundant vectors and real time measurement of dc-voltages
and neutral point current.
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Recently, in [5] an adaptive control design of nonlinear
ABSTRACT
In this paper, the problem of designing a global robust model
reference adaptive output feedback tracking control is presented
for SISO nonlinear systems containing a vector of unknown
constant parameters; entering linearly and subject to bounded
disturbances with unknown bound. Furthermore, there is no a
priori knowledge assumed on the sign of the high frequency gain.
A Nussbaum gain is introduced in the global adaptive algorithm to
ensure that the output tracks any bounded reference signal.
Lyapunov stability method is applied and a dead zone criterion is
used to guarantee that all the signals are globally bounded and the
tracking error is arbitrary small. 

Keywords
Nonlinear Systems, Bounded Disturbances, Nussbaum Gain,
Tracking Control, Lyapunov Technique, Dead-Zone Criterion.

1. INTRODUCTION
Adaptive control theory has received a significant research
attention in the past few years [7-9, 12, 13]. The problem of
designing a global adaptive output-feedback tracking control
for SISO nonlinear systems, with an unknown constant
parameter vector entering linearly, was presented in [1].
Recently, the problem of designing a global robust adaptive
control for SISO uncertain nonlinear systems having unknown
differentiable time varying parameters and subject to bounded
disturbances was solved in [2]. The previously mentioned
control designs were proposed under the assumption that the
sign of the high frequency gain is known. Thus, in [3, 14] a
model reference adaptive control was presented for SISO
nonlinear systems contained only unknown constant
parameters that enter linearly in the state equations and were
not subjected to disturbances. No a priori information on the
sign of the high frequency gain was assumed. Hence, a new
model reference adaptive tracking control algorithm with a
Nussbaum gain [11] was proposed. Furthermore, in [4] a
robust model reference adaptive control was designed for SISO
linear dynamical system of unknown sign of high frequency
gain and in the presence of disturbance of unknown bound.
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systems with unknown high frequency gains which are
perturbed by disturbances with unknown bounds was
considered. However, the disadvantage of this technique is the
over parameterization of the estimation of the unknown
parameters. Moreover, there is burden in the implementation
of the tuning functions due to the introduction of different
orders of error terms in the Lyapunov functions. Moreover, in
[9] an adaptive output regulator for nonlinear systems with
unknown high frequency gain is proposed. Their results were
limited due to regulation other than tracking and not including
external disturbance with unknown band. 

In this paper, an alternative technique different from that used
in [5] is proposed to overcome the side effects of its control
strategy. An adaptive control is developed for a certain class of
nonlinear systems having unknown constant parameters and
subject to unknown bounded disturbances. The main
contribution of this paper is that no a priori information is
assumed on the sign of the high frequency gain and the
bounded disturbances are bounded by an unknown bound. A
robust model reference adaptive output feedback control; with
a Nussbaum gain; is designed that guarantees that the output
tracks any bounded reference output. Lyapunov stability
method is applied to guarantee the overall system stability.
Furthermore, the dead zone technique presented in [6] is used
to ensure the boundedness of all the signals. Finally, an
example is given with simulation results to demonstrate the
efficiency of the control strategy.

The paper is organized as follows. In Section 2, the problem
statement is presented. Few notations and useful lemmas are
stated in Section 3 along with the control design strategy. In
Section 4, an example is given with simulation results to
demonstrate the efficiency of the designed control. Finally, the
conclusion is presented in Section 5.

2. PROBLEM STATEMENT
Consider the following class of SISO nonlinear systems with
unknown constant parameters [3] and subject to bounded
disturbances at the output:

where x is the state vector, u is the control, y is the output,
 is the constant unknown parameter vector,

the vector  is Hurwitz with relative degree ρ for every
θ,i.e., , where  is the high frequency gain of
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the system, and  is a bounded disturbance with unknown
bound and has bounded time derivative.

where , ,  and 
are in observer canonical form:

By rearranging the nonlinear terms, (1) can take the following
form [3]:

where  and  denote the numbers of unique nonlinear

elements in  and in ,respectively,

,  and , 

denote those nonlinear terms, ,  are known

constant vectors and ,  are constant vectors

depending on   . From the special form of , we can

conclude that:

Define the following reference model:

which is minimum phase, stable and with relative degree ρ,
 and are monic, Hurwitz polynomials with orders n and

n-ρ, respectively and  is the high frequency gain. Thus, the
reference output is:

where r is a bounded reference input. Define the following
transfer matrix [3]:

where  is monic, Hurwitz polynomial with order ρ-1, and:

Theorem 2 presented in [3] is now modified to include the
additional term  representing the bounded disturbance. 

Theorem 1: There exists a  such that system (3) can be
expressed as:

where  and: 

with:

where  and  have the same format of  and 
respectively and  is the effect of the disturbance on the
output.
Proof:
Assuming zero initial conditions, system (1) can take the
following form:

where    is the Laplace transform of f(t) and: 

with  monic and of order n,  monic and
, , , ,  of order n-ρ.

Moreover, consider the following identity:

v t( )

0 σ: R R→≠ ψi: R Rn→ 0 i p≤ ≤ Ac b Cc, ,( )

( ) ( ) ( )[ ] [ ]0...001,00,
00

0 11 ==⎥
⎦

⎤
⎢
⎣

⎡
= −×−

c
T

n
nn

c Cbbb
I

A θθθ ρ ……

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]yyyaaa niii
T

,,11 00,0,0 ψψψθθθ ρρ ………… == −

( ) ( ) ( ) ( ) ( )   
11
∑∑

′′

=

′

=

′′′′+′′+++=
p

i
ii

p

i
iic ydyduybyaxAx φφσθθ�

)(tvxCy c +=
(3)

p' p''

ψ0
ψi y( )θi

i 1=

p

∑
φ'i y( )( ): R Rn→ 1 i p'≤ ≤ φ''i y( )( ): R Rn→ 1 i p''≤ ≤

d'i Rn∈ 1 i p'≤ ≤

d''i Rn∈ 1 i p''≤ ≤

θ ψi y( )

11,1,0,1,0 ,, −≤≤′′≤≤=′′′≤≤=′ ρjpidpid jiji

)(
)()(

sR
sZksW

m

m
mm =

Rm s( )
km

rWy mm =

)()(
)()(

sPsZ
ssW

m

α
=

P s( )

102]1[)( 32 =≥= −− nforandnforsss Tnn …α

v t( )

θ

)())(( 1 tvuykWy T
m +−= ωθσ

k bρ km⁄=

[ ]TTTTT yyWuyW ωωσω ′′′= )(

[ ]TTT
y

T
y

T
u θθθθθθ ′′′= 0,

[ ]T
pp

TT yyWyyW )()()()( 11 ′′ ′′′′=′ φφφφω …

[ ]T
p

T
p

T
0,0,11 ′′ ′′′′=′ θθθθθ …

)(  
)()(
)()(

)(1 sv
sPsR
sQsR

sv
m

p=

ω'' θ'' ω' θ'
v1 t( )

{ } { }⎜
⎜
⎝

⎛
+′

′
+= ∑

′

=

p

i
i

p

i

p

p yL
sR
sZuyL

sR
sZ

bsy
1

)(
)(
)()(

)(
)(

)( φσρ

{ } )()(
)(
)(

1
tvyL

sR
sZp

i
i

p

i +⎟
⎟
⎠

⎞
′′

′′
∑

′′

=

φ
(15)

L f t( ){ }

( )( ) baCAsIC
sR
sZ

b cCc
p

p 1

)(
)( −+−=ρ

( )( ) pidaCAsIC
sR
sZb icCc

p

i ′≤≤′+−=
′ − 1,

)(
)( 1

ρ

( )( ) pidaCAsIC
sR
sZb icCc

p

i ′′≤≤′′+−=
′′ − 1,

)(
)( 1

ρ

Rp s( ) Zp s( )
Zp s( ) Z'i s( ) 1 i p'≤ ≤ Z''i s( ) 1 i p''≤ ≤

(2)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(16)

(17)

(18)
41



ADAPTIVE CONTROL OF NONLINEAR SYSTEMS WITH UNKNOWN HIGH FREQUENCY GAIN AND DISTURBANCES 
where  is monic and of order ρ-1. There exist , ,
 for given ,  to satisfy the above identity. It

follows that for a given , there exist , , , ,
, ,  satisfying:

Thus, we can get identity (9) by manipulating identity (15)
with (19)-(22) as follows.

From (20), we get:

From (21), we have:

Similarly:

From (19), we can get this form:

From (23)-(26) and (10)-(13), we obtain:

From (15), we get:

By rearranging the terms, (9) can be obtained and the Theorem
is proved. Furthermore, define the measured tracking error

, hence:

where:

From (15), we can conclude that the control takes this form: 

where  is the estimate of . Hence, (15) becomes:

where . Since the transfer function  is known,
we can generate an auxiliary error signal e2 as in [6], [7], and
[8]:

Moreover, define:

( ) )()()()()()()( 0, sPsRsPsZsbsQsR mmy
T
yp =+− θαθρ

Q S( ) Q S( ) θy
θy 0, Rp s( ) Rm s( )

θ θ'u θ'i θ'i 0, 1 i p'≤ ≤
θ''i θ''i 0, 1 i p''≤ ≤

)()()()()( sQsZsPsZs pm
T
u −=αθ

pisZsQsPsZs imi
T

i ′≤≤′−=′+′ 1),()()()()( 0,θαθ

pisZsQsPsZs imi
T

i ′′≤≤′′−=′′+′′ 1),()()()()( 0,θαθ

uy
sPsZ
sQsZ

uy
sPsZ

s

m

p

m

T
u )(

)()(
)()(

1)(
)()(

)( σσαθ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

( ) uy
sPsZ
sQsZ

uysW
m

pT
u )(

)()(
)()(

1)()( σσθ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=′′+′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′ )()(

)()(
)(

0, yy
sPsZ

s
iii

m

T
i φθφαθ

piy
sPsZ
sZsQ

i
m

i ′≤≤′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
− 1),(

)()(
)()( φ

( ) =′′+′′ )()()( 0, yysW iii
T

i φθφθ

piy
sPsZ
sZsQ

i
m

i ′≤≤′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
− 1),(

)()(
)()( φ

( ) =′′′′+′′′′ )()()( 0, yysW iii
T

i φθφθ

piy
sPsZ
sZsQ

i
m

i ′′≤≤′′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′′
− 1),(

)()(
)()( φ

( ) y
sZ
sRysWby

sPsZ
sQsR

m

m
y

T
y

m

p

)(
)()(

)()(
)()(

0, =+− θθρ

)(
)()(
)()()(

)()(
)()(

1 y
sPsZ
sZsQuy

sPsZ
sQsZ

i
m

i

m

pT φσωθ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

y
sZb

sRy
sPsZb

sQsR
y

sPsZ
sZsQ

m

m

m

p
i

m

i

)(
)(

)()(
)()(

)(
)()(
)()(

ρρ

φ −+′′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′′
−

y
sZb

sR
b

ysR
ysZ

m

mp
ii )(

)()(
)()(

ρρ

φ −⎟
⎟
⎠

⎞
+′′′′−

⎜⎜
⎝

⎛
′′−+= )()()()(

)()(
)()( ysZuysZ

sPsZ
sQuy iip

m

φσσ

ρρ

σωθ
b

vsR
y

sZb
sRuy p

m

mT )(
)(

)()( +−=

r y ym–=

)())(( 1 tvuykWe T
m +−= ωθσ

[ ] [ ]TTT rk ,,1, ωωθθ ==

ωθσ Tyu ˆ)(1−=

θ̂ θ

)()~( 1 tvkWe T
m += ωθ

θ̃ θ̂ θ–= Wm

ωθωθ T
mm

T WWe ˆˆ
2 −=

ωζ mW=

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
42



ADAPTIVE CONTROL OF NONLINEAR SYSTEMS WITH UNKNOWN HIGH FREQUENCY GAIN AND DISTURBANCES 
Thus, (19) can take this form

In the following section, the tracking problem is solved with
the following growth conditions (where c is a generic notation
for constant positive real):

3. MAIN RESULT
Few notations and useful lemmas are introduced in order to
prove the boundedness of the signals in the system. The
exponential weighted norm in with  is defined by:

The following lemma is associated with the input-output
properties in .

Lemma 1 [3]: 

Let . If  is proper and analytic in 
for some  then:

(ii) Furthermore, when  is strictly proper, we have:

where, for any  

Two swapping lemmas are also presented.

Lemma 2 (Swapping Lemma 1) [3]: 

Let ,  and  be differentiable. Let  be a
proper stable rational transfer function with a minimal
realization , that is .
Then 

where:

Lemma 3 (Swapping Lemma 2) [3]: 
Let ,  and ,    be differentiable. Then:

where:

arbitrary positive real. Furthermore, if , then:

where c is a finite positive real independent of . For
convenience, we will use  to denote  with  and
c for any bounded positive real. 
In the theorem to follow, a model reference adaptive tracking
control is proposed for the case of nonlinear systems with
unknown sign of the high frequency gain and subjected to
bounded disturbances with unknown bound. Lyapunov
technique is applied and the dead zone criterion is used to
guarantee the boundedness of all the signals in the system.
Theorem 2: 
A global robust model reference adaptive tracking control (17)
exists for the nonlinear systems (1), satisfying equation (22),
having unknown constant parameters entering linearly and the
sign of the high frequency gain is unknown. Furthermore, the
nonlinear systems are subjected to bounded disturbances with
unknown bound.
Proof: Define the augmented error e1:

where  is the estimate of  and  is the Nussbaum gain
as follows:

where x is defined later on. From (32) and (35), (37) takes the
following form:

Define the Lyapunov function:
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where  is a symmetric positive definite matrix,  is a
positive constant,  is the unknown upper bound of  such
that ,  is the estimate of  and   . 

By differentiating (40), we get:

Therefore, with reference to [4], define the following
adaptations:

where  is the dead zone function depending on  as follows:

By substituting (42) and (44) in (51) and by using (39), we get:

From (45) and (46), we have:

From (43), (46) and (47), we get:

Hence:

By integrating both sides, we get:
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Therefore:
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where:

From (56), if x (t) is unbounded, then there exists an interval in
x that makes f(x) highly negative consequently; the right hand
side of (55) becomes negative. Therefore, there is a
contradiction as the left hand side of (55) is positive. Hence, x
is bounded and consequently, N, V, , , z and .
Moreover, from (42) and (46) we conclude that  and

.

In order to prove that all signals are bounded, define [3]:

From equations (19) and (21), we get:

Since Wm is strictly proper, and from Lemma 1, we get:

From (8), we have:

Since

are proper and stable, the growth conditions of (36) and

is strictly proper, hence from Lemma 1, we obtain:

It follows from (58), (60) and (63), that

And, we prove that the signals are bounded by m. Since every
transfer function in W is proper, from equations (10) and (12)
and Lemma 1, we get . Since  and from
(61), we obtain . Hence, from (36), and since W is
strictly proper, we get . Consequently, from (31),
we conclude that . Moreover, since  is
strictly proper and from (48), we have .
Furthermore, from equation (59) we get

 and since  are proper and the
derivative of  are bounded, therefore:

Similarly, we can prove that . Therefore, we
conclude that:

By applying Lemma 2, with  in (35), we get:

Thus, from (66) and (67) and from Lemma 1, we conclude that:

Moreover, from (35) and (39):

Hence:

By applying Lemma 3, we get:
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Since  is proper and by applying Lemma 3, we obtain:

By taking  norm of equation (71) and by applying Lemma
1, we get:

where  is bounded. Since , let
 where . Thus, 

Therefore, we conclude that:

By substituting (74) in (75), we obtain:

where ,  and . Substitute (75) in
(64):

For a large enough ,  which
takes the following form:

By applying Bellman - Gronwall Lemma [10], we have:

Therefore, the boundedness of m and , is concluded
from . The boundedness of the other signals is deduced
from equation (66). Hence, y is bounded and since ym is
bounded, therefore the tracking error e is also bounded.
Consequently, all the signals are bounded and the Theorem is
proved.

4. EXAMPLE AND SIMULATION 
RESULTS

Consider the following nonlinear system [3] with an additional
term representing the bounded disturbance with unknown
bound:

This example is of relative degree 2 with the following
reference model [3]:

And the filter W(s) is of first order and can take it as
. Furthermore, we have:

Fig. 1 and 2 represent the simulation results corresponding to
the following initial conditions, parameters and gain matrices:

Fig. 1 show clearly that the output of the system tracks the
reference output and that the error between them decreases
with time in Fig. 2 thus demonstrating the efficiency of the
robust model reference adaptive output feedback tracking
control shown in Fig. 3.

To prove that the adaptive control is global, simulation results
Fig. 4 - Fig. 6 are given corresponding to different initial
conditions , 

It is readily from Fig. 4-6 that the output has succeeded to
track the reference output and that the robust adaptive tracking
control is global.
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Figure 1.  The reference output ym and the output of the  
system y

Figure 2. The model reference adaptive tracking control

Figure 3.  The model reference adaptive tracking control

Figure 4. The reference output ym and the output of the    
system y

Figure 5. the error between y and ym

Figure 6. The model reference adaptive tracking control

5. CONCLUSIONS
In this paper a global robust model reference adaptive output
feedback control is proposed for SISO nonlinear systems
containing unknown constant parameters entering linearly in
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the state equations and subject to bounded disturbances. The
main contribution of this paper is that there is no a priori
information on the high frequency gain. Moreover, the
bounded disturbances are bounded by an unknown bound. To
achieve asymptotic output tracking, the proposed adaptive
control algorithm uses a Nussbaum gain. Lyapunov stability
criterion and the dead zone technique are applied to ensure that
all the signals are globally bounded and the tracking error is
arbitrary small. 
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